$SO_3(\mathbb{R})$ est simple.

[CALDERO, $\overline{9}$]

ÉNONCÉ:

Théorème:

Le groupe $SO_3(\mathbb{R})$ est simple.

DÉVELOPPEMENT:

LEMME:

- 1. SO(n) est engendré par les retournements.
- 2. Un sous-groupe distingué de SO(3) contenant un retournement est égal à SO(3).

Démonstration. 1. Soit $\sigma \in SO(n)$. σ étant en particulier un élément $\sigma \in O(n)$, c'est un produit de k-réflexions orthogonales. On peut supposer que deux réflexions qui se succèdent dans la décomposition soient distinctes. Voyons que si H et H' sont deux hyperplans distincts, alors il existe un couple (r, r') de retournements tels que $s_H \circ s_{H'} = r \circ r'$.

En effet, en posant $F = H \cap H'$, on a, par la formule de GRASS-MANN:

$$\dim(F) = \dim(H) + \dim(H') - \dim(H + H') = n - 2$$

 (e_1,\ldots,e_n) de \mathbb{R}^n . On définit alors r et r' par :

$$r(e_i) = e_i, \quad 1 \le i \le n - 3,$$

$$r(e_{n-2}) = -e_{n-2}, \quad r(e_{n-1}) = s_H(e_{n-1}), \quad r(e_n) = s_H(e_n),$$

$$r'(e_i) = e_i, \quad 1 \le i \le n - 3,$$

$$r'(e_{n-2}) = -e_{n-2}, \quad r'(e_{n-1}) = s_{H'}(e_{n-1}), \quad r'(e_n) = s_{H'}(e_n),$$

On a $s_H \circ s_{H'} = r \circ r'$ car l'égalité est valable sur F et F^{\perp} . Vérifions que r et r' sont des retournements.

Il est clair que la restriction de s_H à F est l'identité donc s_H stabilise F^{\perp} , et se restreint en un automorphisme orthogonal de déterminant -1 sur F^{\perp} . Ainsi, la restriction de s_H à F^{\perp} est une symétrie plane possédant une droite propre associée à la valeur propre 1 et une droite propre associée à la valeur propre -1. Donc r est bien un retournement, et il en est de même pour r'.

2. Supposons que H contienne un retournement d'axe D, noté r_D . Soient D' une autre droite et $s \in SO(3)$ qui envoie D sur D'. Alors $s \circ r_D \circ s^{-1}$ admet le même spectre que r_D et D' est espace propre pour la valeur propre 1, c'est donc le retournement d'axe D' qui est dans H par hypothèse.

Démonstration. (théorème) : Considérons H un sous-groupe distingué et non trivial de SO(3). Soit $h \in H \setminus \{I_3\}$. On définit :

$$\phi: SO(3) \longrightarrow \mathbb{R}$$
$$g \longmapsto tr(g \circ h \circ g^{-1} \circ h^{-1})$$

Remarquons que la trace d'un élément $r \in SO(3)$ est de la forme car H et H' sont supposés distincts. Soit (e_1, \ldots, e_{n-2}) une base $|tr(r)| = 1 + 2\cos(\theta)$ où $\theta \in [-\pi, \pi[$ est égal à l'angle de la rotation r. orthonormée de F, que l'on complète en une base orthonormée | Comme le groupe SO(3) est connexe, compact et contient l'identité, son image par ϕ est de la forme [a,3], où $a \leq 3$. Mais a < 3. En effet, si a = 3, alors $\theta = 0$. Donc $h \in Z(SO(3)) = \{I_3\}$ ce qui est une contradiction avec l'hypothèse sur h. Remarquons que 3 est la limite croissante de la suite $\left(\left(1+2\cos\left(\frac{\pi}{n}\right)\right)\right)_{n\in\mathbb{N}^*}$. Donc on dispose d'un $n \in \mathbb{N}^*$ tel que $a < 1+2\cos\left(\frac{\pi}{n}\right) < 3$. Soit $g_n \in SO(3)$ tel que $\phi(g_n) = 1+2\cos\left(\frac{\pi}{n}\right)$, ce qui implique que $h_n := g_n \circ h \circ g_n^{-1} \circ h^{-1} \in H$ est une rotation de trace $1+2\cos\left(\frac{\pi}{n}\right)$, et donc d'angle $\pm \frac{\pi}{n}$. Ainsi, h_n^n est une rotation d'angle π de H, donc un retournement de H. \square

Remarques:

- Le groupe $SO_2(\mathbb{R})$ est abélien.
- Si $n \geq 3$ est impair, $SO_n(\mathbb{R})$ est simple.
- Si $n \geq 4$ est pair, $SO_n(\mathbb{R})$ n'est pas simple. En particulier $Z(SO_n(\mathbb{R})) = \{Id_n, -Id_n\}$ est distingué.